Masalah pada rating arus
kabel biasanya menghitung arus yang diizinkan sehingga suhu pada konduktor
tidak melebihi nilai tertentu. Metode numerik sebaliknya digunakan untuk
menghitung distribusi suhu di dalam kabel dan suhu keliling yang disebabkan
oleh panas yang dihasilkan konduktor. Akan tetapi jika metode numerik digunakan
untuk menghitung rating arus kabel, maka digunakan pendekatan iteratif dengan
menentukan arus konduktor pada nilai tertentu dan menghitung suhu konduktor
yang bersangkutan. Kemudian arus diatur dan perhitungan suhu diulang hingga
diperoleh nilai suhu tertentu dalam toleransi tertentu.
Standar IEC 62095
mengenai metode numerik berhubungan dengan metode elemen hingga. Metode ini
digunakan untuk memecahkan persamaan diferensial parsial yang pada akhirnya
membentuk persamaan perpindahan panas kabel. Konsep dasar metode elemen hingga
adalah bahwa suhu dapat dimisalkan menjadi model diskrit yang tersusun dari
beberapa fungsi kontinu yang didefinisikan sebagai sejumlah subdomain
berhingga.
Dalam penyelesaian
rating arus kabel, model yang digunakan biasanya dalam bidang dua dimensi x dan
y, dan elemen yang digunakan umumnya berbentuk triangular atau quadrilateral.
Fungsi elemen dapat berupa sebuah bidang atau permukaan kurva seperti yang
telihat pada Gambar 1 dan 2. Bidang tersebut berhubungan dengan jumlah minimum
node elemen, di mana tiga untuk triangle dan empat untuk quadrilateral.
Gambar 1 Elemen
triangular dan quadrilateral
Gambar 2 Elemen
quadratic-triangular
Ketelitian perhitungan
tergantung pada kontrol pengguna yang meliputi beberapa parameter, diantaranya
adalah ukuran region yang didiskritkan, ukuran elemen yang dibentuk oleh mesh
generator, tipe dan lokasi dari batas region, adanya rugi-rugi kabel, dan
pemilihan tingkat waktu dalam analisis transien.
Ukuran region
Region merupakan daerah
batas tempat menentukan nilai node. Permukaan tanah merupakan salah satu batas,
tetapi bagian bawah dan sisi kanan dan kiri harus didefinisikan sedemikian
sehingga suhu node keseluruhan mempunyai nilai yang sama dan gradien suhu yang
melalui batas sama dengan nol. Dari penelitian yang dilakukan, sebuah medan
segi empat dengan lebar 10 m dan kedalaman 5 m, dengan kabel diletakkan di
tengah, memberikan hasil yang memuaskan dalam banyak kasus praktis (IEC 62095,
p 25).
Ukuran elemen
Dengan menentukan ukuran
ruang antara batas node pada berbagai bagian dari jaringan yang dianalisis
seperti kabel, thermal backfill, tanah, dan lain-lain, maka digunakan beberapa
kontrol ukuran. Ukuran elemen harus lebih kecil mendekati bagian-bagian kabel
untuk memperoleh hasil yang teliti. Penggunaan ukuran elemen yang berbeda dan
detil ditunjukkan pada Gambar 3.
Gambar 3 Penggunaan
ukuran elemen yang berbeda
Kondisi batas
Metode elemen hingga
menggunakan representasi kondisi batas yang berbeda dan lokasi batas yang acak,
termasuk garis lurus dan batas kurva. Untuk rating arus kabel, tiga kondisi
batas yang berbeda masih bisa digunakan. Kondisi isotermal digunakan jika suhu
diketahui sepanjang bagian batas. Suhu ini merupakan fungsi dari panjang
permukaan.
Sebuah batas konveksi
ada jika panas bertambah atau hilang, dan sebaiknya digunakan ketika kabel
dengan diameter yang besar dipasang mendekati permukaan tanah. Jika ini adalah
kasus di mana pengguna harus menentukan koefisien kenveksi panas dan suhu
udara, maka nilai koefisien tersebut 2 sampai 25 W/m2.K untuk konveksi alami
dan 25 sampai 250 W/m2.K untuk konveksi paksa.
Pada kondisi ketiga,
fluks yang mengalir adalah konstan, dan ini biasanya digunakan ketika ada
sumber panas lain di sekitar kabel.
Representasi rugi-rugi kabel
Rugi-rugi kabel seperti
yang dijelaskan sebelumnya baik konduktor, selubung dan dielektrik dianggap
sebagai sumber panas dalam metode numerik. Rugi-rugi ini perlu divariasikan
dengan waktu atau suhu. Dengan menggunakan metode perhitungan dalam metode
analitik nilai rugi-rugi kabel harus dihitung pada setiap langkah menggunakan
prosedur yang berulang-ulang.
Dari penjelasan di atas,
maka dapat disimpulkan cara menentukan daya hantar arus dengan metode analitik
maupun numerik dalam bentuk flowchart pada Gambar 4.
Gambar 4 Flowchart
penyelesaian metode analitik dan numerik